

An Introduction to Pathodynamics from the View of Liver Homeostasis Using the Ornstein-**Uhlenbeck Process**

Donald C. Trost, MD, PhD Translational and Molecular Medicine

November 5, 2007

Outline

- 1. Sources of Error in Lab Measurements
- 2. Additional Problems with Reference Regions
- 3. Stochastic Processes
- 4. Description of Pathodynamics
- 5. Examples and Results
- 6. Future Directions

1. Sources of Error in Lab Measurements

November 5, 2007

- Variations due to the patient
 - Controllable biological variables
 - Posture
 - Hospitalization and immobilization
 - Exercise
 - Athletic training
 - Circadian variation
 - Recent meal (effects up to 12 hr)
 - Smoking
 - Alcohol

November 5, 2007

- Variations due to the patient
 - Long-term biological influences
 - Age
 - Gender
 - Race
 - Environment (eg, altitude, heat exposure)
 - Menstrual cycle
 - Diet (eg, vegetarianism, malnutrition)

- Variations and errors due to specimen handling
 - Tourniquet duration (> 3 min)
 - Puncture trauma
 - Labeling (eg, ID, sample time)
 - Site of blood draw
 - Finger stick
 - Arterial
 - Intravenous line

November 5, 2007

- Variations and errors due to specimen handling (cont'd)
 - Contamination
 - Interferences and altered states
 - Hemolysis and leakage from cells
 - Anticoagulants and preservatives
 - Icteric (bilirubin) serum
 - Lactescent (lipid) serum
 - Drugs or metabolites

- Variations and errors due to specimen handling (cont'd)
 - Freezing
 - Long-distance transportation (airplane)
 - Pressure changes
 - Vibration
 - Temperature changes
 - Evaporation
 - Increases concentrations of all constituents

Analytical variation

- Bias
 - Operational (inherent in the procedure or instrumentation)
 - Misadjustment
 - Wear
 - Miscalibration
- Variability
 - Increases with concentration in many cases
 - Dilutional

November 5, 2007

Analytical variation (cont'd)

- Variability
 - Technician
 - Instrument
 - Environment (eg, temperature, humidity)
 - Reagents
- Mistakes

2. Additional Problems with Reference Regions

November 5, 2007

Problems with Reference Ranges

- Not sampled from representative population (not randomly sampled)
- Calculated incorrectly
- Sample size too small
- May have no statistical meaning
- Not meant to be externally valid

Ref: Trost (2006)

UMVU Elliptical Reference Region Estimator

$$(\mathbf{Z}_{\alpha} - \mathbf{M})' \mathbf{\Sigma}^{-1} (\mathbf{Z}_{\alpha} - \mathbf{M}) = \chi_{p}^{2} (\alpha)$$

$$\breve{\varepsilon}(\mathbf{Z}_{\alpha}) = \frac{n-p-2}{n} \left(\mathbf{Z}_{\alpha} - \overline{\mathbf{X}}\right)' \mathbf{S}^{-1} \left(\mathbf{Z}_{\alpha} - \overline{\mathbf{X}}\right) - \frac{p}{n}$$

$$E[\breve{\varepsilon}(\mathbf{Z}_{\alpha})] = \chi_{p}^{2}(\alpha)$$
$$V[\breve{\varepsilon}(\mathbf{Z}_{\alpha})] = \frac{2}{n-p-4} \left(\frac{(n-2)p}{n^{2}} + \frac{2(n-2)}{n} \chi_{p}^{2}(\alpha) + (\chi_{p}^{2}(\alpha))^{2} \right)$$

UMVU Coverage Probability by Sample Size

95% Confidence Interval for a 95% Reference Region

November 5, 2007

Trost: BASS XIV Savannah GA

zer

Interlaboratory Variability

log LD

November 5, 2007

3. Stochastic Processes

November 5, 2007

Types of Stochastic Processes

- Discrete state, discrete time
 - Markov chain
- Discrete state, continuous time
 - Markov process
- Continuous state, discrete time
 - Time series
- Continuous state, continuous time
 Brownian motion process

Definition

• Random vector $\mathbf{X}_{p}(\omega): \omega \to \mathfrak{R}^{p}$

Stochastic process

 $\mathbf{X}_{p}(t,\omega):(t,\omega)\to T\times\mathfrak{R}^{p}$

Standard Brownian Motion

- A stochastic process (B_t) with the characteristics:
 - A p-dimensional Gaussian process with mean **O** and variance tl_p
 - Independent increments
 - Continuous in t almost always

Standard Brownian Motion

- Additional properties
 - Stationary
 - Markovian
 - Martingale
 - $Cov[B_s, B_t] = t s$, for $s \le t$
 - Scaling: B_{ct}/c^{1/2} is SBM
 - Time-inversion: tB_{1/t} is SBM
 - Not differentiable

2-D Brownian Motion

November 5, 2007

4. Description of Pathodynamics

November 5, 2007

Clinical Definition of Pathodynamics

- Person -- a Brownian particle in pdimensional clinical measurement space acted on by internal and external forces
- Pathodynamics forces and motions that characterize a diseased biological system

Analogy to the First Law of Thermodynamics

$\Delta energy = \Delta work + \Delta heat$ dU = dW + dQ $\Delta health = \Delta biowork + \Delta bioheat$

A Mathematical Definition

$\Delta health = \Delta biowork + \Delta bioheat$

$$\frac{dX}{dt} = f(X) + "\text{noise"}$$
$$dX = dW(X) + dQ(X)$$
$$dX_t = \alpha(X_t, t)dt + \theta(X_t, t)dB_t$$

Homeostasis: Ornstein-Uhlenbeck Process

$$dx_{t} = -\alpha (x_{t} - \mu)dt + \theta dB_{t}$$

= homeostatic force × displacement
+ scaled Brownian motion
$$\Delta health = \Delta biowork + \Delta bioheat$$

Homeostasis: Ornstein-Uhlenbeck Process

 $x_{\star} = \mu - e^{-\alpha t} \left(\mu - x_0 \right)$ $+\theta e^{-\alpha t}\int_{0}^{t}e^{\alpha s}\theta dB_{s}$

Ito integral

November 5, 2007

Homeostasis x_{t} is Gaussian stochastic process with $E[x_t] = \mu - e^{-\alpha t} (\mu - x_0) \underset{t \to \infty}{\longrightarrow}$ $V[x_t] = \theta^2 e^{-2\alpha t} \left(\int_0^t e^{2\alpha s} ds \right)$ $=\frac{\theta^2}{2\alpha}\left(1-e^{-2\alpha t}\right)_{t\to\infty} \quad \left|\frac{\theta^2}{2\alpha}\right| =$

November 5, 2007

Autocorrelation Structure

$Corr[x_s, x_t] = e^{-\alpha(t-s)}, t \ge s$

November 5, 2007

5. Examples and Results

November 5, 2007

November 5, 2007

Preliminary Univariate Results

Measure	μ	α	θ	σ² (∞)	σ² (7)
log ALT	2.98	0.0138	0.0871	0.2421	0.0483
log AST	3.06	0.0144	0.0666	0.1541	0.0281
log GGT	2.84	0.0136	0.0763	0.2147	0.0371
log LD	5.00	0.0088	0.0485	0.1338	0.0155
log ALP	4.31	0.0047	0.0285	0.0856	0.0055
Tot prot	7.23	0.0369	0.1321	0.2365	0.0954
Albumin	4.41	0.0291	0.0752	0.0971	0.0325

6. Future Directions

November 5, 2007

Pathodynamic Trajectories

November 5, 2007

Clinical Pathology (System Identification/Classification)

- Diagnostic Regions/Patterns in Clinical Space
 - Probability density level sets
 - Force fields
 - Velocity fields
- Diagnostic Regions/Patterns in Parameter Space
 - "Temperature" space
 - "Friction" space
 - Phase space

Clinical Therapy (Control Theory)

- What is controllable?
- What are the best modes of control?
- How do we infuse clinical medicine with the concept of stochastic dynamic systems and control?
- Who is going to do the research needed to advance the science and mathematics?

November 5, 2007

Acknowledgements

- Mathematical Biosciences Institute
 Director, Avner Friedman, PhD
- The Ohio State University Department of Mathematics
 - Peter March, PhD
 - Edward Overman II, PhD

References

- Durrett R. Stochastic Calculus: A Practical Introduction. CRC Press, Boca Raton, FL, 1996.
- Øksendal B. Stochastic Differential
 Equations: An Introduction with Applications.
 Springer-Verlag, Berlin, 2003.
- Trost DC. Multivariate probability-based detection of drug-induced hepatic signals. *Toxicol Rev* 2006; 25(1):37-54.

Questions?

Craig Trost craig.trost@pfizer.com

November 5, 2007